Env creation
Air Force Research Laboratory (AFRL) Autonomous Capabilities Team (ACT3) Reinforcement Learning (RL) Core.
This is a US Government Work not subject to copyright protection in the US.
The use, dissemination or disclosure of data in this file is subject to limitation or restriction. See accompanying README and LICENSE for details.
create_agent_sim_configs(agents, agent_platforms, sim_class, avail_platforms, epp_registry, *, multiple_workers=False)
¤
Creates dictionary of agent configs used byt the simmulator
Parameters¤
agents: dictionary of agent names and configs sim_class: simulator class used by environment avail_platforms: available platforms in the simulator
Returns¤
None
Source code in corl/environment/utils/env_creation.py
def create_agent_sim_configs(
agents: typing.Dict[str, AgentParseInfo],
agent_platforms: typing.Dict[str, PlatformParseInfo],
sim_class: typing.Callable,
avail_platforms: typing.Callable,
epp_registry: typing.Dict[str, EpisodeParameterProvider],
*,
multiple_workers: bool = False
) -> typing.Tuple[typing.Dict[str, BaseAgent], dict]:
"""
Creates dictionary of agent configs used byt the simmulator
Parameters
----------
agents: dictionary of agent names and configs
sim_class: simulator class used by environment
avail_platforms: available platforms in the simulator
Returns
-------
None
"""
sim_agent_configs = {}
agent_dict = {}
for platform_name, platform_config in agent_platforms.items():
agent_platform = avail_platforms.ParseFromNameModel(platform_config) # type: ignore
agent_part_cls: typing.List = []
agent_part_cfg: typing.List = []
for agent_name, agent_configs in agents.items():
if agent_configs.platform_name != platform_name:
continue
agent_class = agent_configs.class_config.agent(
**agent_configs.class_config.config,
epp=epp_registry[agent_name],
agent_name=agent_name,
platform_name=platform_name,
multiple_workers=multiple_workers
)
agent_dict[agent_name] = agent_class
partial_agent_part_list = agent_class.get_platform_parts(sim_class, agent_platform)
for (cls, cfg) in partial_agent_part_list:
unique = True
for i, part_cls in enumerate(agent_part_cls):
if cls == part_cls and agent_part_cfg[i] == cfg:
unique = False
break
if unique:
agent_part_cls.append(cls)
agent_part_cfg.append(cfg)
agent_part_list = list(zip(agent_part_cls, agent_part_cfg))
sim_agent_configs[platform_name] = {
"platform_config": platform_config,
"parts_list": agent_part_list,
}
return agent_dict, sim_agent_configs